Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            Romanowicz, Barbara (Ed.)Aerosol radiative forcing is an important but often poorly understood component of regional climate. While glacier ice contains the most detailed archives of past atmospheric aerosol composition and temperature, no well-preserved ice records extending into the last climatic transition have been reported for the historically important European region. Here, we use an Alpine ice core to document changes in European aerosols and climate from the end of the last glacial age (LGA) through the Holocene. The core was drilled on a glacier dome in the French Alps called the Dôme du Goûter (DDG), and it provides a stratigraphically intact record of aerosol and climate extending to at least 12 kyears (ky) before present. Although dating near the base of the glacier is not well constrained, the oldest DDG ice layers reflect glacial conditions in western Europe during the LGA. In addition to changes in atmospheric transport, increased sea-salt and dust deposition in western Europe recorded in the LGA ice suggest enhanced westerly winds and more active dust sources, possibly including North Africa. Deposition of terrestrial biogenic indicators during the cold LGA climate was lower, however, consistent with strongly reduced European vegetation. The DDG record of terrestrial biogenic emissions also suggests a decline of European forests throughout the Holocene, resulting from deterioration of climatic conditions and more recently from establishment of the first agricultural societies. The pronounced changes in atmospheric aerosol recorded in Alpine ice imply large variations in aerosol radiative forcing in western Europe during the last 12 ky.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Ancient texts and archaeological evidence indicate substantial lead exposure during antiquity that potentially impacted human health. Although lead exposure routes were many and included the use of glazed tablewares, paints, cosmetics, and even intentional ingestion, the most significant for the nonelite, rural majority of the population may have been through background air pollution from mining and smelting of silver and lead ores that underpinned the Roman economy. Here, we determined potential health effects of this air pollution using Arctic ice core measurements of Roman-era lead pollution, atmospheric modeling, and modern epidemiology-based relationships between air concentrations, blood lead levels (BLLs), and cognitive decline. Findings suggest air lead concentrations exceeded 150 ng/m3near metallurgical emission sources, with average enhancements of >1.0 ng/m3over Europe during the Pax Romana apogee of the Roman Empire. The result was blood lead enhancements in young children of about 2.4 µg/dl above an estimated Neolithic background of 1.0 µg/dl, leading to widespread cognitive decline including a 2.5-to-3 point reduction in intelligence quotient throughout the Roman Empire.more » « lessFree, publicly-accessible full text available January 21, 2026
- 
            Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma–crust interactions with evaporite rocks. Here, we undertake a high-resolution multiproxy geochemical analysis of ice-core archives spanning the 1831 CE volcanic event. S isotopes confirm a major Northern Hemisphere stratospheric eruption but, importantly, rule out significant contributions from external evaporite S. In multiple ice cores, we identify cryptotephra layers of low K andesite-dacite glass shards occurring in summer 1831 CE and immediately prior to the stratospheric S fallout. This tephra matches the chemistry of the youngest Plinian eruption of Zavaritskii, a remote nested caldera on Simushir Island (Kurils). Radiocarbon ages confirm a recent (<300 y) eruption of Zavaritskii, and erupted volume estimates are consistent with a magnitude 5 to 6 event. The reconstructed radiative forcing of Zavaritskii (−2 ± 1 W m−2) is comparable to the 1991 CE Pinatubo eruption and can readily account for the climate cooling in 1831–1833 CE. These data provide compelling evidence that Zavaritskii was the source of the 1831 CE mystery eruption and solve a confounding case of multiple closely spaced observed and unobserved volcanic eruptions.more » « lessFree, publicly-accessible full text available January 7, 2026
- 
            Growing season temperatures play a crucial role in controlling treeline elevation at regional to global scales. However, understanding of treeline dynamics in response to long-term changes in temperature is limited. In this study, we analyze pollen, plant macrofossils, and charcoal preserved in organic layers within a 10,400-year-old ice patch and in sediment from a 6000-year-old wetland located above present-day treeline in the Beartooth Mountains, Wyoming, to explore the relationship between Holocene climate variability and shifts in treeline elevation. Pollen data indicate a lower-than-present treeline between 9000 and 6200 cal yr BP during the warm, dry summer and cold winter conditions of the early Holocene. Increases in arboreal pollen at 6200 cal yr BP suggest an upslope treeline expansion when summers became cooler and wetter. A possible hiatus in the wetland record at ca. 4200–3000 cal yr BP suggests increased snow and ice cover at high elevations and a lowering of treeline. Treeline position continued to fluctuate with growing season warming and cooling during the late-Holocene. Periods of high fire activity correspond with times of increased woody cover at high elevations. The two records indicate that climate was an important driver of vegetation and treeline change during the Holocene. Early Holocene treeline was governed by moisture limitations, whereas late-Holocene treeline was sensitive to increases in growing season temperatures. Climate projections for the region suggest warmer temperatures could decrease effective growing season moisture at high elevations resulting in a reduction of treeline elevation.more » « less
- 
            Abstract The Eldgjá eruption is the largest basalt lava flood of the Common Era. It has been linked to a major ice‐core sulfur (S) spike in 939–940 CE and Northern Hemisphere summer cooling in 940 CE. Despite its magnitude and potential climate impacts, uncertainties remain concerning the eruption timeline, atmospheric dispersal of emitted volatiles, and coincident volcanism in Iceland and elsewhere. Here, we present a comprehensive analysis of Greenland ice‐cores from 936 to 943 CE, revealing a complex volatile record and cryptotephra with numerous geochemical populations. Transitional alkali basalt tephra matching Eldgjá are found in 939–940 CE, while tholeiitic basalt shards present in 936/937 CE and 940/941 CE are compatible with contemporaneous Icelandic eruptions from Grímsvötn and Bárðarbunga‐Veiðivötn systems (including V‐Sv tephra). We also find four silicic tephra populations, one of which we link to the Jala Pumice of Ceboruco (Mexico) at 941 ± 1 CE. Triple S isotopes, Δ33S, spanning 936–940 CE are indicative of upper tropospheric/lower stratospheric transport of aerosol sourced from the Icelandic fissure eruptions. However, anomalous Δ33S (down to −0.4‰) in 940–941 CE evidence stratospheric aerosol transport consistent with summer surface cooling revealed by tree‐ring reconstructions. Tephra associated with the anomalous Δ33S have a variety of compositions, complicating the attribution of climate cooling to Eldgjá alone. Nevertheless, our study confirms a major S emission from Eldgjá in 939–940 CE and implicates Eldgjá and a cluster of eruptions as triggers of summer cooling, severe winters, and privations in ∼940 CE.more » « less
- 
            Abstract Rapid warming and human exploitation threaten boreal forests. Understanding links among vegetation, climate, and people in this vast biome requires highly resolved long‐term records that integrate regional inputs. We developed an 850‐year pollen‐based record of supraregional vegetation change using a southern Greenland ice core and atmospheric modeling that identified the boreal and mixed‐conifer forests of eastern Canada as the dominant pollen source regions. Conifer pollen increased ∼1400 CE at the onset of the cooler and drier Little Ice Age. A subsequent decline began ∼1650 CE and a statistically significant pollen change after 1760 CE suggests ecological consequences of the Little Ice Age cooling and initial human exploitation that persisted until recent decades. These supraregional changes are broadly consistent with local records and demonstrate intensification of human impacts on northern forests, suggesting a shift from a climate‐modulated to an increasingly human‐controlled system during recent centuries.more » « less
- 
            Black carbon is a paleofire proxy that has been measured from glacial ice, snow, soils and lake sediments, though relatively few comparisons have been made with other fire indicators in sedimentary geoarchives. Microscopic charcoal, quantified from palynological microscope slides and macroscopic charcoal, quantified from wet-sieved deposits, are the most commonly applied methods for paleofire interpretation of Quaternary sediments. This research explores the down-profile patterns across three paleofire proxies (refractory black carbon, microscopic and macroscopic charcoal) and potential paleofire interpretations from a sediment core dating to the last centuries from Speke Gulf, Lake Victoria, and a young soil profile from a kopje located in the surrounding watershed in Serengeti National Park, Tanzania. The results of three paleofire metrics show similar trends within each site, with a positive trend across all metrics and increasing variability with increased measurement values (heteroscedastic). Notably, refractory black carbon (rBC) concentrations are two orders of magnitude higher in lake sediment samples compared to soil samples. rBC is positively correlated with both microscopic and macroscopic charcoal values and the overall profile patterns down the sediment core are similar, with the exception of the rBC increases from 2.5 to 0 cm depth that may result from increased fossil fuel combustion. The Speke Gulf rBC measurements are in an intermediate range between those published from glacial ice and other lake sediments. New rBC records from different ecosystems and temporal scales will provide paleofire insights and potential to interpret source areas and depositional patterns. The exploration of soil archives offers the potential to exploit semi-arid ecosystems and archaeological sites that have no nearby traditional paleoenvironmental study site targets.more » « lessFree, publicly-accessible full text available September 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
